

Analysis of engineering aspects of hybrid aerial vehicle - ESTOLAS

Authors: I.Ozols, A.Urbahs, V.Bulanovs Speaker: Ilmars Ozols

Riga 2014, April 10 - 11

Concept of ESTOLAS

SEVENTH FRAMEWORK

HYBRID AIRCRAFT

Combination of airplane, helicopter, dirigible and hovercraft

List of Structural Features

HIGH-LIFTING AIRFOIL

Wing profile TSAGI-R-III-18% (ЦАГИ-Р-III-18%)

HIGH-LIFTING AIRFOIL

Aircraft wing (top view)

Smaller dimensions
Higher wing load
Higher speed for take-off and landing

SEVENTH FRAMEWORK

Tail section

2 vertical stabilizers + 2 rudders
Bigger horizontal stabilizer and elevator
Contra rotating control surface
More stabilization and control over the aircraft
Heavy and complicated construction

Jet flaps

Front and rear landing gears

- Increased performance at take-off and landing on a wide range of surfaces
- Non-retractable landing gear increases drag

SKI LANDING GEAR

Placement of landing gears

- Good placement if the aircraft is performing more like helicopter during take-off and landing
- Not effective for airplane performance

Placement of landing gears

Landing gear closer to CG = increased nose pitching up

SEVENTH FRAMEWORK

Central section

Increased lift during take-off and landing configurations
 Air stream supply to the air cushion and jet flaps
 Low efficiency - provided lift = only 14% of overall mass
 Low safety factor for passangers

SEVENTH FRAMEWORK

Inlet mechanism

Inlet control

- Increased effectivenes of central rotor during take-off and landig
 - Increased drag during take-off and landig

RING-SHAPED FUSELAGE FOR HELIUM

Fuselage for helium – volume: 6600 m3; lift: 6976 kg

AIR CUSHION

Air cushion

Landing on all surfaces
 Heavy construction
 High drag during take-off and landing

Conclusion

Performance during take-off and landing

Vehicle type	Provided lift
Airplane	~ 80 %
Heliciopter	~ 14 %
Dirigible	~ 6 %
Hovercraft	0 %

Aerodynamic data must be analysed deeper

RIGA TECHNICAL UNIVERSITY THE INSTITUTE OF AERONAUTICS

16